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EDITOR-IN-CHIEF’S WORD

Dear Readers,

As engineers, we stand on the brink of a transformative era, where unprecedented advancements in artificial
intelligence (Al) are reshaping the foundation of our disciplines and redefining the way we approach chal-
lenges.

In this issue of Engineering Power, we are proud to showcase four thought-provoking articles that delve into
Al’s role in advancing engineering practices. These works highlight diverse applications, from human-robot interaction to
Al-supported innovations in industrial and food technologies, underscoring the immense interdisciplinary potential of Al
We trust that these contributions will inspire meaningful dialogue and foster collaboration across the engineering community.

Editor-in-Chief
Vedran Mornar, President of the Croatian Academy of Engineering

EDITOR’S WORD
Dear readers,

I am pleased to present the new issue of Engineering Power journal, edited by Prof. Zelimir Kurtanjek, PhD.
In four articles, we present the possible applications of artificial intelligence using examples from mechani-
cal engineering, chemical engineering and food technology. I hope you enjoy reading them.

Editor
Bruno Zeli¢, Vice-President of the Croatian Academy of Engineering

FOREWORD
Dear readers,

As we all know, regardless of our specific engineering expertise, Al has transformative power changing on
how we do our daily work, and we all are aware that in near future our professions will undergo fundamental
changes. Traditionally, engineering science and practice are based on human knowledge of sophisticated
applications of laws of nature and logic (mathematics, physics, chemistry) focused on individual specific
tasks, regardless how complex and big is the task. However, due to complexity of global digitalization and
anthropogenic effects on Earth climate, our world has deeply changed requiring knew machine Al assisted knowledge. With
the unprecedented speed of Al development there is a growing recognition of the need for ethical Al, ensuring that Al tools
are developed and used responsibly for the world wide population. In spite of concerns, Al is not just a phase; it's here to
stay and will continue to shape our lives in profound ways. This issue of Engineering Power brings four articles which show
research and application of Al in human and robot communication, soft sensing in petrochemical synthesis plant, applica-
tion of Bayes causal network for Al modelling of Tennessee-Eastman process, and a manuscript on Al supported computer
vision in food technologies. Hopefully, this publications will motivate our readers for our national and also international
interdisciplinary cooperation.

. Guest-Editor
Zelimir Kurtanjek, University of Zagreb, Faculty of Food Technology and Biotechnology (retired)
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Abstract

This paper introduces a virtual being and a robot capable of nuanced non-verbal communication in virtual, mixed, and
physical environments. The prototype of such an advanced system is PLEA, an “emotion-aware” virtual being. PLEA
assesses a person s emotional state during interaction based on a multimodal approach and then uses that information
during non-verbal communication. PLEA leverages Al-driven sensory systems to interpret visual and auditory data,
enabling it to understand and respond appropriately to human emotions and actions in various realistic scenarios.
The research focuses on endowing this entity with the ability to convey and interpret non-verbal cues such as body
language, facial expressions, and contextual gestures.

The main goal of PLEA is to maintain human-robot interaction by building mutual understanding and common ground.
We address the challenges in Al algorithms related to emotion and gesture recognition, 3D modeling, information
visualization, and sensor integration, which are crucial for creating expressive, environment-appropriate non-verbal
behaviors. We propose a multi-layered framework that enables virtual beings to adapt their non-verbal communication
strategies to each specific environment. In virtual spaces, the emphasis is on creating expressive avatars. For mixed
reality, integration into real-world contexts is crucial, while in physical environments, the challenge involves translat-

ing digital expressions into physical forms.

Keywords: virtual beings, creative Al, cognitive robotics, multimodal interaction, mixed reality

1. Introduction

Virtual beings, encompassing digital avatars and agents,
represent the convergence of Al and virtual reality.

Virtual beings (VBs) represent embodying entities that
can interact with humans in an intuitive and meaning-
ful way [1]. They are not only programmed to engage in
complex dialogues but are also capable of displaying a
range of emotions and understanding human sentiments,
making them increasingly indispensable in sectors like
education, entertainment, and mental health [2].

Cognitive robotics, on the other hand, extends the capa-
bilities of traditional robotics by integrating Al to create
machines that can perceive, reason, and learn from their
environment [3]. This allows them to operate autono-
mously in a variety of settings, from assisting in homes
and workplaces to performing tasks in environments that
are hazardous for humans. The cognitive aspect involves
the robot’s ability to make sense of the world through sen-
sors and data, mimicking human cognitive processes such
as learning, memory, and decision-making.

The synergy between virtual beings and cognitive robot-
ics is particularly evident in mixed reality environments,
where physical and digital realms coalesce. Here, virtual

beings can be embodied through robots, allowing for a
tangible interaction that blurs the lines between what’s
virtual and what’s real. This symbiosis opens up new
frontiers for human-machine interaction, where virtual
companions can provide support, education, and compan-
ionship in more immersive and personalized ways.

The potential for virtual beings and cognitive robotics to
transform human life is immense [4]. The power of Al
can be used to create entities that understand humans and
adapt to their needs, ultimately leading to a future where
technology enhances every aspect of human experience.

PLEA is a virtual being and a robot that has been devel-
oped to analyze and employ behaviors using a form of
biomimicry [5]. PLEA is based on recent research find-
ings in human cognition, cognitive robotics, and human-
robot interaction to develop new robot reasoning and
interaction strategies. PLEA relies on Deep Learning Al
and multimodal information fusion to predict the possible
responses of the person interacting with it.

2. Robot and the virtual being design

PLEA represents a cutting-edge virtual being and a ro-
bot, conceived to inhabit the vast expanse of cyberspace.
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PLEA’s existence is anchored on a physical server, which,
through the intricate web of the internet, bridges it to the
outside world. In this way PLEA can be approached via
every computer connected to Internet. A software agent
can move through cyberspace from interface to interface
depending on which interface requires communication. If
the software agent is currently occupied with communica-
tion through one interface, another user requesting com-
munication will receive a notification of the occupation.
Once the initial communication is finished, the software
agent will become available. Although it is possible to cre-
ate a software agent that can communicate with multiple
users simultaneously, this method was chosen to give the
agent a personality. Such an agent is unique regardless of
the interface used and the interaction environment. This
unique setup empowers PLEA to transcend traditional
boundaries and manifest itself across a multitude of en-
vironments, ranging from purely virtual environments to
augmented realities and even interfaces that connect the
digital with the physical.

The essence of PLEA’s design is its versatility and adapt-
ability. The PLEA software agent uses a contextual ap-
proach to reasoning, where the robot is seen as part of
the environment, regardless of whether it is the real world
or cyberspace. In these diverse settings, PLEA is not just
a passive inhabitant, but an active participant. It is pro-
grammed to recognize and interpret human emotions, re-
spond to commands, and initiate interactions, making it
an intelligent companion capable of providing assistance,
entertainment, or companionship. The potential applica-
tions of such a virtual being are vast, from serving as a
personal assistant in smart homes, guiding users in virtual
learning environments, to acting as a mediator in remote
collaborations.

PLEA, as an “emotion-aware” system designed to reason
and operate within realistic scenarios, where its capability
to perceive, interpret, and respond to human emotions is
paramount. This sophisticated level of emotional intelli-
gence enables PLEA to understand and adapt to the nu-
anced emotional states of individuals, facilitating interac-
tions that are not only responsive but also empathetic and
supportive [6].

3. Virtual being and the robot design

The development of a virtual being using Unreal Engine’s
MetaHuman application is a sophisticated process that
merges cutting-edge technology with creative design to
bring hyper-realistic characters to life [7]. The initial step
involves conceptualizing the virtual being’s appearance,
personality, and purpose, which serves as the foundation
for its creation.

Upon finalizing the concept, the development moves into
the MetaHuman Creator, a cloud-streamed application that
allows for the creation of photorealistic human models
with an unprecedented level of detail, as shown at Fig. 1.

In this step, it is possible to select from a wide range of
preset faces that can be finely adjusted to achieve the de-
sired look. Features such as skin complexion, eye color,

hair style, and facial hair can be meticulously customized,
enabling the creation of a unique virtual being that closely
matches the initial concept.

Fig. 1. MetaHuman control rig

The next phase involves rigging the MetaHuman for ani-
mation, a process that Unreal Engine simplifies through
its advanced skeletal and facial rigging system [8]. This
system provides a comprehensive set of tools for animat-
ing complex human motions and expressions, making it
possible to bring the virtual being to life with realistic
movements and emotional expressions.

Once the character is rigged, developers can integrate it
into the Unreal Engine environment, where they utilize
the engine’s powerful rendering capabilities to achieve
lifelike visuals. Lighting, shading, and environmental ef-
fects are fine-tuned to enhance the virtual being’s realism
within its virtual surroundings.

The final step involves programming the virtual being’s
behaviors and interactions using Unreal Engine’s visual
scripting system, Blueprint. This allows developers to cre-
ate complex scenarios where the MetaHuman can interact
with users or other elements within the virtual world, re-
sponding to inputs and exhibiting behaviors that reflect its
programmed personality and purpose.

The computational architecture used in PLEA is a con-
text-to-data interpreter that endows the machine with the
capability to ‘reason’ based on constantly changing per-
spectives. In this way, PLEA can make decisions based on
newly acquired information that is incomplete at the time
of deciding on a particular behavior.

Deep Learning plays a significant role in managing a large
amount of unstructured information that can be used to
create control mechanisms and to approximate various
phenomena or processes occurring in cyberspace or the
real world [9]. Primarily, this refers to the development of
neural network models that should enable the recognition
of emotions based on facial expressions and by analyz-
ing the speech of the person during the interaction. Fig
2. depicts the multimodal architecture of the model that
controls PLEA’s emotion recognition mechanisms.

The model consists of three primary components: acous-
tic, linguistic, and visual [10]. These modalities are inte-
grated using a specific algorithm for combining informa-
tion, which relies on assigning different weights to various



factors. For visual data processing, the ResNet 300 face
detection algorithm is employed to glean information
directly from a real-time video stream. Furthermore, it
incorporates a methodology inspired by Savchenko [11]
to facilitate emotion detection. The acoustic component
is engineered to distill features from sound recordings
by employing techniques such as spectrograms and Mel-
frequency cepstral coefficients [12]. The data is then clas-
sified using a convolutional neural network that has been
previously trained. The linguistic component utilizes a
manually developed feature extraction tool alongside a
bag-of-words model to understand and process language.
Emotion and intent recognition are accomplished using
the Long Short-Term Memory (LSTM) algorithm [13].
In addition, specialized hardware is utilized to separate
speech from any ambient noise and to identify the interac-
tion targets of the system.

The updated algorithm operates by integrating data from
all three modalities simultaneously during the information
fusion process. It employs both weighted and base factors
in equal proportion across these modalities. The results
generated by each modality are scaled using a predefined
weight factor, after which the values from all three are
combined. This algorithmic method has proven effective
in real-time applications where speed of processing is
critical. A practical implementation of all three modalities
is described in [14].
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In the first step, PLEA acted as an emotional mirror, sim-
ply mirroring the facial expressions of the person it in-
teracts with. The mirroring operation can be performed
by copying significant points from the face of the person
in interaction to the face of the virtual agent. This is usu-
ally achieved by employing an approach based on FACS
(Facial Action Coding System), which defines and iden-
tifies significant points on the person’s face [15]. These
points are aligned with the positions of muscles responsi-
ble for generating the person’s facial expressions. In the
second approach, applied to PLEA, multimodal channels
are used to reason about current emotions and to generate
emotional responses on the face of the virtual agent. This
approach is employed in this work to facilitate the future
development of a mechanism for the autonomous genera-
tion of facial expressions based on perceived emotions.
The new computational model will be trained using a data
corpus collected from real human-to-human interactions.
The main objective of this approach is to advance autono-
mous human-to-agent interactions. The agent will be able
to create and implement strategies to comfort or make
someone happy based on the new mechanism.

The PLEA physical robot can be understood as a physical
interface through which the PLEA virtual agent is embod-
ied in the real, physical world. The PLEA robot consists
of multiple components, including: a control computer,
a microcontroller that contains three microphones which
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enable the determination of spatial location for sound di-
rection, an auxiliary power supply system for microcom-
puters used in case of a sudden interruption in electricity
supply, a light projector, a base casing, the robot’s neck,
and the robot’s head with a surface for projecting the face.
The effect of embodiment is achieved through back-pro-
jected light. The light projector is placed within the neck
part of the robot, and light projected onto the front face
of the robot is used to display facial expressions in real
time. The robot development process is shown at Figure
3. Figure 4 depicts different robot configurations: the first
two figures show PLEA within the research lab, and the
last two depict PLEA in Central Library at the Art & Al
Festival in Leicester, the UK in 2022.

Fig. 4. Different PLEA robot configurations

4. Data gathering and results

The cognitive model used to control the robot responses
is based on data collected on several occasions. The first
two events took place more than a year ago at the Brit-
ish Science Festival and the Art Al Festival in Leicester,
UK (https://www.art-ai.io/programme/plea2/). The sub-
sequent opportunity arises during the controlled experi-
ments conducted at the Faculty of Mechanical Engineer-
ing and Naval Architecture, University of Zagreb, Croatia
(FAMENA).

Attendees of the festivals had the freedom to walk up to
the robot and engage in non-verbal communication. Dur-
ing these interactions a lot of data is collected to be used
on building the new model for autonomous generation of
facial expressions of the robot.

Examination of the data gathered through this method re-
vealed that environmental factors significantly influence
interactions with PLEA. As a result, a second set of data
was obtained through interviews under more controlled
conditions where participants were posed targeted ques-
tions regarding their experiences interacting with the ro-
bot. The conceptual framework for the interviews was in-
spired by the Media Equation Theory [16, 17, 18, 19, 20].

Data gathering under controlled conditions was conduct-
ed at FAMENA. During this time, 23 participants were
interviewed over the span of a week. Each participant

was asked to engage with PLEA for four minutes, within
which they could spontaneously share emotional signals
through facial expressions. This duration was chosen to
allow participants to establish a certain degree of rapport
with the robot. Following the interaction, participants re-
sponded to 12 questions posed by a human interviewer.

Figure 5 shows an example of a 24-second interaction in
which joy and surprise alternate.
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Fig. 5. PLEA emotion-interaction plot



The graph indicates that the person was initially confused.
The first distinct emotion expressed by the person was
surprise, to which PLEA responded accordingly. Follow-
ing this, the person smiled upon noticing this facial ex-
pression, and PLEA mirrored the smile. Subsequently, the
person expressed surprise once more. In the next phase,
PLEA reacted with surprise, prompting the person to re-
spond with a smile, indicating happiness. Afterwards, the
person exhibited surprise for an extended period, which
persisted until the conclusion of the interaction (non-ver-
bal communication).

The interviews were then recorded and subsequently
analysed. The group of participants was quite uniform,
as the interactions were confined to a controlled environ-
ment within the research laboratory rather than a public
setting, consisting of university students. All participants
gave their consent for the use of their data for research
purposes. Every exchange prompted a series of emotional
reactions from the robot, which were reciprocated with
the individual.

5. Discussion

Within this framework, our research method zeroes in on
the ways in which individuals attribute human qualities to
non-human entities. In the context of this investigation,
treating PLEA with human attributes is termed as personi-
fication [21].

PLEA is equipped to engage with individuals wherever
they are. This omnipresence allows for a seamless inte-
gration of PLEA into daily human activities, offering a
new dimension of interaction that is both dynamic and
responsive. According to the Media Equation Theory, this
study of interactions with PLEA seeks to unravel the un-
derlying reason - why do individuals behave in the man-
ner we’ve observed [22]? Our findings indicate a natural
inclination among people to attribute human emotions,
intentions, and sentiments to inanimate objects, even
with the understanding that these objects are not sentient.
This phenomenon also seems to apply to PLEA, although
the participants know that it consists of a plastic housing
modelled on a human head.

6. Conclusions, and future work

The virtual being PLEA and the robot are at the inter-
face between technology and human emotion. Designed
to mimic and respond to human expressions through
advanced algorithms and projected light configurations,
PLEA exemplifies the fusion of Artificial Intelligence,
Mixed Reality, and Smart Environment Design with em-
pathetic interaction. The virtual PLEA agent is an inhabit-
ant of cyberspace. It is also encapsulated in a plastic shell
resembling a human head and serves as a focal point for
studies on personification and emotional exchange, rais-
ing pivotal questions about human relationship with cog-
nitive artifacts in a world where technology increasingly
mirrors humanity.

Previous research suggests that users tend to ascribe hu-
man emotions, motives, and feelings to objects even when
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it is clear the object in question is not human. This is also
the case with PLEA, which is strongly anthropomor-
phized by its design as a human head, albeit made of a
plastic shell. PLEA as a ghost-like entity evoked the simi-
lar reactions. In this context, the methodological approach
is focused on communicative practices, where people as-
sign human characteristics to cognitive artefacts. This is
defined here as personification, and the main research
questions being explored are which features, character-
istics, and functionalities are most appropriate in facilitat-
ing PLEA’s personification for the use case scenario.

PLEA as a virtual being and the robot has great potential
to be used in different areas of human activity, includ-
ing healthcare, education, smart living, robotics, etc. The
adaptability of PLEA allows it to cater to a broad spec-
trum of emotional and cognitive needs. In care settings,
such a system could assist staff by offering additional
support to residents, thereby enhancing the overall qual-
ity of care. By integrating PLEA into these environments,
it is possible to create a more nurturing and responsive
care ecosystem that prioritizes the emotional well-being
of its inhabitants. Whether the aim is to provide company
through conversation, remind the user of important tasks
and medication or simply offer an emotionally attuned ear
- the possible applications of PLEA are many and varied.

As a proof of concept, PLEA demonstrates a paradigm
shift, moving away from sensed data towards contextual
anticipation. Current multidisciplinary research is car-
ried out with partners specializing in Creative Technolo-
gies and Informatics focused on human communication
with artefacts. The development of the PLEA reasoning
mechanism is aimed at autonomous agent responses that
are customized to current and context-dependent expecta-
tions and needs. The use of PLEA in real-world applica-
tions will include further pilot projects in public spaces
as well as in intelligent learning and healthcare environ-
ments.
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Abstract

Propylene is a crucial intermediate in petrochemical synthesis, which requires high purity. This study details the crea-
tion of a soft sensor model for continuous monitoring of propylene levels in a propane/propylene splitter refinery facil-
ity. The data obtained from the plant of the input variables are processed using different pre-processing methods. Soft
sensor models of neural networks with multilayer perception (MLP) and neural networks with long short-term memory
(LSTM) were created using the Python programming language. During the development of the MLP model, various
hyperparameters were tested, including the number of neurons in the hidden layer and the impact of the activation func-
tion type on the model’s quality. Similarly, when developing the LSTM model, the number of LSTM units and the number
of time steps into the past were also examined. A statistical analysis of the findings was performed, which revealed that
both model types give strong correlation values between model data and real data of propylene content and that both
neural network model types may be used in the refinery information system. The use of developed soft sensors guaran-
tees that propylene content information is always up to date and continuous, allowing for fast responses to changes in
propylene content for enhanced process management. The soft sensors improve the end product’s quality and can result
in considerable cost savings.

Key words: soft sensor, neural networks, multi-layer perceptron, long short-term memory networks, propylene



1. Introduction
Soft sensors

Many processes and plants struggle to measure crucial
process variables on a continuous and reliable basis. The
process control of such processes is based on laboratory
analysis, which is frequently uncommon and time-con-
suming, and the cost of using and maintaining online ana-
lyzers can be exceedingly expensive. For these reasons,
there is a need for the development and use of intelligent
software that can continuously monitor various physico-
chemical properties and process variables. Using soft
sensors, it is feasible to determine the state of difficult-
to-measure variables from easily measurable secondary
variables like temperature, pressure, and flow by identify-
ing their functional correlations. [1]. The creation of soft
sensors in the field of process engineering necessitates
expertise from several scientific fields, as well as a mix
of scientific research and plant experience. Soft sensors
enable process engineers to analyze process variables and
circumstances that cannot be monitored in real time and
utilize them to improve process control. The problem of
not being able to measure product properties in real time
is due to several reasons, such as the fact that refineries do
not have enough process analyzers installed in the plant
itself because they are very costly to install and maintain,
or that for some variables, such as chemical reaction con-
versions, there is no possibility of direct measurement at
all. In process engineering, it is therefore highly desirable
to use such software estimators in the areas of process
control and management, fault detection and process di-
agnostics, instrumentation and measurement, where the
need for measuring devices is reduced and measuring
devices are replaced. [2] Given the frequency of failures
and maintenance requirements as well as the high cost
of online analyzers used for continuous measurement of
propylene content, it is necessary to develop a model for
continuous assessment of propylene product content in a
propane/propylene splitter production plant.

Soft sensor models are divided into three basic categories:
white-box models, also referred to as “mechanistic”, “an-
alytical” and “fundamental” models, gray-box models,
also referred to as “semi-analytical” and “hybrid” mod-
els, and black-box models, also referred to as “empirical”
models. [3] Black-box models depend exclusively on col-
lected data, whereas white-box models utilize theoretical
knowledge of the process. [4] Gray box models combine
black and white box models to address issues; that is, their
construction uses theoretical knowledge of the process in
conjunction with data obtained from the process. [5] For
the purpose of this study, black-box models were creat-
ed, i.e., models of neural networks with multilayer per-
ceptions and neural networks with long-term short-term
memory. The term ‘black box’ refers to a model in which
it is not necessary to know the nature of the process itself.
Instead, the model is constructed solely by identifying the
functional connection between the input and the output of
the process. [6]

The general process of developing soft sensor models in-
cludes data collection, pre-processing and model develop-
ment. During data collection, the availability and quality
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of the data is important as it forms the basis for all subse-
quent steps. In the model development phase, theoretical
knowledge of the process, such as physical principles, re-
action equations, etc., can facilitate the selection of input
variables and data pre-processing. [2] Additional informa-
tion from operators and maintenance specialists can aid
in creating a soft sensor. After collecting data, it is neces-
sary to preprocess it, which includes procedures such as
data visualization, identification of extreme and missing
values, and data filtering. Outliers were identified by ap-
plying the 36 rule when preparing this paper. It is a fun-
damental concept in statistics that is used to describe the
distribution of data and the probability of finding a data
point within a certain range. It is based on the concept of
standard deviation (o) and is particularly important in the
context of normal distributions. According to this rule, all
data points that lie outside the range x = 30, where u is
the mean of the data, can be considered extreme values
or anomalies.

When preprocessing the data, influencing variables are
selected; these are the input variables that have a specific
impact on the output variable, i.e. on the variable whose
value must be predicted. The type of model for sensor de-
velopment is also defined. In this paper, Pearsons corre-
lation coefficient was employed to select the influencing
variables. This statistical measure quantifies the linear re-
lationship between two continuous variables, with values
ranging from -1 to +1. These values indicate both the in-
tensity and the direction of the relationship between the
variables by estimating how well the data points of two
variables displayed in the coordinate system are aligned
along a straight line. [7]

Artificial neural networks

Artificial neural networks are computer models employed
in machine learning, processing data based on the work-
ings of the human brain, albeit on a much smaller scale.
These networks are instrumental in solving various com-
plex problems, including pattern recognition, classifica-
tion, regression, and optimization tasks [8]. The initial
type of neural network models developed were those with
multilayer perceptrons, featuring multiple hidden layers
and activation functions. Information flows bidirection-
ally through such networks, with input information propa-
gating forward, and weight coefficients updated backward
using the error gradient.

The basic architecture of such a neural network, shown
in Figure 1, consists of three types of layers composed of
nodes: an input layer, an arbitrary number of hidden lay-
ers, and an output layer, where the output of one layer is
the input to the next layer. The input layer receives the raw
data, and no computations are performed in this step, but
the input neurons simply pass the input data to the hidden
layer. Activation functions are introduced in the hidden
layer, and most of the time all hidden layers use the same
activation function. The output layer is the last layer of the
network, which receives the information learned via the
hidden layers and converts it into the final result. An acti-
vation function can also be used in the output layer, which
is usually different from the one used in the hidden layers.
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[9] Activation functions are used to introduce non-line-
arity into the models, which is achieved by introducing
non-linear activation functions. An important feature of
nonlinear activation functions is their derivability, so that
a backpropagation algorithm can be applied to calculate
errors with respect to the weight coefficients and accord-
ingly optimize the weights using one of the optimization
techniques. The nonlinear activation functions most com-
monly used in neural networks, including sigmoid, ReLU,
ELU, and tanh, were also employed in the preparation of
this paper. [10]
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Fig. 1. The basic structure of a multi-layer perceptrons
neural network

Each node has its own input information, through which
it receives communication from other nodes and the envi-
ronment, and its own output information, through which
it communicates with other nodes and the environment.
In addition, each node has its own activation function f,
through which the input information is transformed into
output information. The connections between the neurons
in an artificial neural network are weighted by a weight
coefficient w, that represents the strength of the connec-
tion between neurons. The inputs are multiplied by the
weight coefficients and then summed in the hidden layer
using the net (Eq. 1) summation function, and their sum
is compared to the neuron’s threshold . If the sum of the
weighted inputs exceeds the threshold of the neuron , the
activation function f generates the output of the neuron y
(Eq. 2). [11,12]

net =X, WX, (1)
y =f(net - 0) 2

Another type of neural network model that has recently
been developed is the long short-term memory (LSTM)
network. This variant of a feedback neural network ad-
dresses the challenge of retaining long-term dependencies
present in conventional feedback neural networks. This is
achieved by installing a “memory cell” that acts as a con-
tainer and can store information over a longer period of
time. The structure of a memory cell is shown in Figure 2.
The memory cell of the LSTM model is managed by three
so-called gates: input gate, forget gate and output gate. An
input gate, mathematically represented by the formula (4),
controls what information is added to the memory cell,
a forget gate, mathematically represented by the formula
(3), controls what data is removed from the memory cell,

and an output gate, mathematically represented by the
formula (5), controls what information is output from the
memory cell.

Ji=o(wxx+wxh,)+b) 3)
¢=Cyxfitixc, 4)
h,=o,+ tanh(c,) %)

In this way, LSTM networks can selectively retain or dis-
card information, allowing them to learn long-term de-
pendencies. The cell state ( represents long-term memory
and is updated using a multiplication or summation opera-
tion, and this state is not directly affected by the weights.
The hidden state () represents short-term memory and is
affected by the weight values.[13]

— X ar »
C ¢
t-1

e et

Fig. 2. The structure of a memory cell of an LSTM network [13]

With the backpropagation algorithm the gradient is cal-
culated, that is, the amount by which the weights w, must
change in the positive or negative direction in order to
minimize the loss function. After the network calculates
the output, it is compared to the actual value of the output.
The square of the difference between these two values, or
the mean squared error, represents the loss function for
regression problems. MSE can be mathematically repre-
sented by the formula [14]:

n )2
misg -2 ©)

where n is the number of samples, is the actual output
value, and is the corresponding predicted output value.
The initial values of the weights are chosen randomly and
passing through the network gives the first value which
is compared with y..

After calculating the gradient, the weights are optimized
layer by layer, starting from the last hidden layer and
working backwards towards the input layer until the error
no longer changes. At this point, learning is stopped, and
it is assumed that the loss function has reached a global
minimum. Problems that can occur during this learning
process include reaching a local minimum instead of a
global minimum and overfitting the network. An over-
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trained network has a very small error on the training
data, but on the test data the error is significantly higher,
i.e., the network loses its ability to generalize and be-
comes specific only to a particular data set. Although it
is desirable that the error is as small as possible, it is also
important that it is consistent on the training and valida-
tion dataset of the model so that the model has reasonable
efficiency when introducing new data.[15]

2. Materials and methods

Propane/propylene splitter

The propane/propylene splitter (PPS) plant consists of
two sections, which are shown in Figure 3. Section 1 is
the section for the feed vessel of the raw material and its
purification, while section 2 is for the separation of the
propane-propylene mixture. For the purposes of this pa-
per, more attention was paid to section 2, which consists
of two distillation columns where the separation of pro-
pylene and propane takes place. The aim of this unit is to
achieve maximum purity of propylene and minimize the
propylene content in propane. The propylene produced in
the process is a colorless, odorless, tasteless, flammable
gas with a required minimum purity of 99.6% by volume.

Propvlene
——
Waste gas
-
Desthanizer Propans/
Propane/propylens column 11 Propylens
compound mixture 1 | splitter
Purification of Moisture
mixture removal
| .
Propane
Section 1 Section 1

Fig. 3. Propane/propylene splitter plant section

The models were developed using Python, a programming
language that contains numerous packages and modules
specialized for machine learning and data analysis. First,
NumPy and Pandas packages were utilized for data pre-
processing and analysis. Matplotlib was employed for
data visualization, allowing for the creation of insightful
plots and graphs to better understand the data distribution
and relationships. Neural network models were devel-
oped using the Keras and Scikit-learn tools.

Data from the refinery database was used to assess the
content of propylene products in the PPS-producing facil-
ity. The imported data consists of input and output vari-
ables measured over two months. For all input and output
variables, approximately 75,000 data points were collect-
ed with a sampling time of 1 minute. The data points for
the output variable (propylene content) were taken from
the AI201A/B gas chromatograph with a sampling time
of 7 minutes.

After data acquisition in the system, data pre-processing
followed. Data preprocessing for the development of the
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MLP model included: shifting the input variables data for
a certain number of time steps based on the dead time,
i.e., the time it takes for the input variable to begin im-
pacting the output, followed by detecting and deleting ex-
treme values. The detection of extreme values was carried
out using the 3o method and by visual inspection, as the
values recognized as extreme by 36 can be part of the dy-
namic behavior of the process, which is important for the
creation of the model.

Data preprocessing during the creation of the LSTM mod-
el comprised moving the input data by a particular num-
ber of time steps owing to input dead time, and extreme
values were not deleted because such models employ data
sequences in which the time sequence of the data is sig-
nificant.

The correlation between the input variables and the out-
put variable was determined using the Pearson correlation
coefficient. When selecting the number of input variables,
care was taken to ensure that the number of influencing
variables was large enough to capture as much important
information from the process as possible, but not too large
due to the need to simplify the model. Because of the con-
nections discovered, several of the input variables were
not included in the model’s further development. Seven of
the 16 available input variables were chosen based on their
association with the output for further model building.

When developing the MLP model, the data set was di-
vided into three parts: the training set, the test set, and the
validation set. The training set comprised 80% of the data,
while the test set comprised 20% of the data. The valida-
tion set consisted of 20% of the training set. When de-
veloping the networks, the number of hidden layers was
set to 1, while the activation functions and the number of
neurons in the hidden layer were changed. The activation
functions used were sigmoid, tanh, ReLU and ELU, and
the number of neurons in the hidden layer varied in the
range from 1 to 20. A network with the highest correlation
coefficient and lowest mean square error was chosen for
each activation function. The Adam algorithm was used
as the optimization algorithm.

When developing the LSTM network model, the data set
was split in the same way as when developing the MLP
model. The number of LSTM units ranged from 1 to 35,
representing the number of time steps in the past, and the
activation functions were modified. The activation func-
tions used were the previously mentioned sigmoid, tanh,
ReLU and ELU functions. For each of the activation func-
tions used, the best network was selected, i.e., the net-
work with the maximum correlation coefficient and the
minimum mean square error. The Adam (Adaptive Mo-
ment Estimation) algorithm was used as the optimization
algorithm.

In addition to the graphical comparison of the model
results and the experimental measurements, the created
models within a specific set of models were compared on
the basis of the mean square error calculated on the train-
ing set, the test set and the validation set, as well as on
the basis of the Pearson correlation coefficient between
the results calculated by the model and the real data. The
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best models from a given set of models were additionally
evaluated by analyzing the model’s error trend (residuals)
and using error histograms.

3. Results and discussion

The plant provided process information, including 16 in-
put variables sampled every 1 minute and a single output
variable, propylene content, which was similarly sampled
every 1 minute. Approximately 75,000 data points were
collected for each input and output variable. During the
pre-processing of the data for the development of the
MLP and LSTM models, the values of the input variables
were temporally shifted by 7-time steps, equivalent to 7
minutes into the past concerning the output variable (rep-
resenting the time required for sampling and calculating
by the online analyzer).

When creating the MLP model, the dead time was tak-
en into consideration, which represents the time it takes
for the input variable to affect the output variable. Pear-
son correlation coefficient values were computed with a
7-time step shift, incorporating input variable lag times
of 30, 60, 90, and 120 minutes. Following the compari-
son of all correlation values, data with a 7-time step shift
plus a lag of 90 minutes were chosen for further analysis.
Initially, influential variables were identified as those with
a correlation greater than + 0.10 with the output variable.
Subsequently, mutual correlations among different input
variables were examined. Considering the obtained corre-
lation results, the input variables were selected for further
development of the model: TI214 (exit temperature from
the C-202 column (bottom of the column)), FIC204 and
FIC203 (reflux of the propylene product at the top of the
C-202 column), PI203 A (pressure at the top of the C-202
column), PI202 (product pressure at the outlet of the
C-201 column) and FIC201 (product flow of the C-201
product at the top of the V-102 column). The variables
PI1202 and PI203B with a correlation greater than + 0.10
were selected as influencing variables. The next step was
to analyze the relationships between the various input var-
iables to determine their mutual correlations. The input
variables for the further development of the model were
selected based on the correlation results obtained: TI214
(outlet temperature from the C-202 column (bottom of the
column)), FIC208 (reflux of the product from the bottom

Table 1. Pearson correlation coefficients for the input variables
on the training data set for the MLP model

Correlation with AI201A
TI214 -0.099
FIC208 0.497
FIC204 0.799
FIC203 0.504
PI203A 0.137
P1202 0.554
FIC201 -0.158

of the C-202 column). The variables P1202 and P1203B
showed a similar correlation value with AI201A/B, of
95.5%. Consequently, PI203B was excluded from fur-
ther model development. Similarly, the variables FIC202
and FIC208 exhibited a close correlation of 99.5% with
AI201A/B, leading to the exclusion of FIC202 from ad-
ditional model development.

The 30 rule was used to identify extreme values, and
missing values and related data from other variables were
eliminated during the development of the MLP model.

When developing the LSTM model, the dead time of the
input variables was not considered when pre-processing
the data, as the LSTM shifts the input variables into the
past by a certain number of time steps during its calcula-
tion. The dead time of the process’s input variables can
be determined by adjusting the number of previous time
steps considered by the LSTM model during develop-
ment. As with the development of the MLP model, all in-
put variables whose correlation with the output variable
was greater than + 0.10 were first taken as influencing
variables and then the mutual correlations between dif-
ferent input variables were observed. The results were the
same as the MLP model, i.e., the variables PI203B and
FIC202 were not considered in the further development
of the model. Extreme values were not removed during
data preprocessing, which is problematic for LSTM mod-
els that rely on temporal sequences of data. During data
pre-processing for both model types, resampling was car-
ried out with a time step of 3 minutes in order to reduce
the amount of data and thus the calculation and overall
model development time. The Pearson correlation coeffi-
cient was then recalculated, which increased slightly, i.e.,
all variables considered in the previous step still had a sat-
isfactory Pearson coefficient value for continued model
development.

The models were developed using the Python program-
ming language (Python version 3.9.7) and its Anaconda
distribution (Anaconda Navigator version 2.1.1). 80 MLP
models were developed in advance, whose structure dif-
fered in terms of the hyperparameters of the model, such
as the number of neurons in the hidden layers and the ac-
tivation functions used. In addition, 140 LSTM models
were preliminarily developed, which differed in terms
of the hyperparameters of the LSTM model such as acti-

Table 2. Pearson correlation coefficients for the input variables
on the training data set for the LSTM model

Correlation with AI201A
TI214 -0.103
FIC208 0.488
FIC204 0.742
FIC203 0.489
PI203A 0.137
P1202 0.554
FIC201 -0.116
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vation functions, number of LSTM units and number of
steps in the past.

The entire data is divided into a training set and a test
set in a ratio of 0.8:0.2. 20% of the data from the train-
ing set was used as the validation set. The Pearson coef-
ficient values were then calculated only for the training
data set to avoid possible data loss. Indeed, if the entire
data is used when developing a model, there is a possibil-
ity of data leakage, where data that does not belong to the
training dataset is used for some steps in the creation of
the model. The freshly acquired information may assist
the model in learning or discovering something it would
not have known otherwise, resulting in a falsely satisfied
appraisal of the model’s performance. The results of the
correlations of the selected input variables with the output
variable are shown in Table 1 for the MLP model and in
Table 2 for the LSTM model.

MLP model results

During the creation of the MLP model, a decision was
made to have only one hidden layer, but adjustments were
made to the activation functions and the number of neu-
rons within that hidden layer. Of the activation functions,
the sigmoid, tanh, ReLU and ELU functions were used,
and the number of neurons in the hidden layer varied be-
tween 1 and 20. A computer experiment was conducted
for each of the chosen activation functions to ascertain the
optimal number of neurons in the hidden layer that yields
the highest correlation factor and lowest mean square er-
ror on the training dataset. In addition to the correlation
factor and the mean square error, the success of the model
is also influenced by the mutual compatibility of the cor-
relation factors of the training and the test and validation
dataset as well as the overall data. An optimal model
should have high and uniform correlation factors for all
data sets and a minimum squared error (as close to 0 as
possible). The results of the influence of the number of
neurons in the hidden layer on the accuracy of the model
are shown graphically in Figure 4.
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Fig. 4. The influence of the number of model neurons in the
hidden layer on the correlation factor and the MSE for the
activation functions a) tanh (top left), b) sigmoid (top right), c)
RelL U (bottom left) and d) ELU (bottom right)
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The findings presented in Figure 4 demonstrate that the
models utilizing the tanh and sigmoid activation functions
exhibit the highest level of stability in terms of correlation
coefficient and the lowest squared error on the training
set. Upon conducting a thorough examination of the ac-
quired models, considering the numerical data presented
in Table 3 and the visual representations in Figure 4, it
was determined that all models exhibit a satisfactory level
of accuracy for implementation in the plant, attributed to
the elevated correlation coefficients. The smallest mean
square error on the test set is shown by the ReLU model
with 18 neurons in the hidden layer, and slightly higher
by the tanh model with 17 neurons. Finally, the model
with the activation function tanh and 17 neurons in the
hidden layer was selected as the best model in terms of
correlation coefficients and minimum square error. The
validation set (Fig. 5) and the entire dataset (Fig. 6) dis-
play the outcomes of a graphical analysis, illustrating the
comparison between the model and the actual data for this
network.

Table 3. Comparison of MLP models with respect to correlation
factors and MSE for different activation functions

Activation function tanh | sigmoid | ReLU ELU
Number of neurons in 17 12 18 10
hidden layer

Correlation - entire 0.964 0.961 0.967 0.956
dataset

Correlation - training 0.964 0.961 0.968 0.957
set

Correlation - test set 0.962 0.959 0.967 0.953
Correlation -validation | 0.961 0.959 0.967 0.955
set

MSE - training set 0.078 0.084 0.072 0.094
MSE - test set 0.077 0.082 0.070 0.096
MSE - validation set 0.076 0.084 0.069 0.093
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Fig. 5. Comparison between real propylene content and MLP
model on validation data for the model with tanh
and 17 neurons in the hidden layer
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Fig. 6. Comparison between real propylene content and the MLP
model on the entire data for the model with tanh and 17 neurons
in the hidden layer
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Figure 7 illustrates the histogram depicting the distribution
of error values across the entire data of the MLP model.
Conversely, Figure 8 displays the histogram representing
the distribution of error values specifically on the valida-
tion data of the MLP model. The histograms illustrate that
the error range lies within £ 0.15% in both cases, with the
majority of errors falling within = 0.1%. This level of ac-
curacy is deemed satisfactory for the plant’s application.
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Fig. 7. Histogram of the distribution of error values on the entire
data for the MLP model tanh with 17 neurons in the hidden layer
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Fig. 8. Histogram of the distribution of error values on the
validation data for the MLP model with tanh and
17 neurons in the hidden layer

LSTM model results

During the development of the LSTM networks, the num-
ber of LSTM units varied from 1 to 35, which also rep-
resents the number of time steps, and the activation func-
tions were changed. The previously mentioned sigmoid,
tanh, ReLU and ELU functions were used as activation
functions. An extensive computer experiment was con-
ducted to assess the optimal number of LSTM units in
the hidden layer for each selected activation function. The
experiment aimed to identify the configuration that yields
the highest correlation factor and the lowest mean square
error on the learning dataset. The success of the model
depends on more than just the correlation factor and mean
square error; it is also influenced by the mutual compat-
ibility of correlation factors across the learning dataset,
test dataset, and evaluation dataset, as well as the entire
dataset. An optimal model is characterized by strong and
uniform correlation factors across all data sets, with the

squared error minimized to nearly zero. Figure 9 visually
presents the correlation between the number of steps into
the past and the accuracy of the model.
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Fig. 9. The influence of the number of model LSTM units in
the hidden layer on the correlation factor and the MSE for the
activation functions a) tanh (top left), b) sigmoid (top right c)

ReLU (bottom left) and d) ELU (bottom right)

The results shown in Figure 9 indicate that the models
with the activation function ReLU and ELU have the
most stable correlation coefficient and the lowest squared
error in the training set.

Following an in-depth analysis of the obtained models,
with reference to the numerical findings in Table 4 and the
visual representations in Figure 9, it was established that
all models demonstrate sufficient accuracy for practical
use at the plant, given the high correlation coefficients.

Table 4. Comparison of LSTM models with respect to correlation
factors and MSE for different activation functions

Activation function tanh | sigmoid | ReLU ELU
Number of LSTM 25 31 33 31
units

Number of LSTM 25 31 33 31
time steps

Correlation - entire 0.981 0.940 0.985 0.981
dataset

Correlation -training 0.982 0.938 0.985 0.981
dataset

Correlation - test 0.979 0.948 0.986 0.982
dataset

Correlation 0.981 0.951 0.981 0.983
-validation dataset

MSE - training 0.047 0.129 0.036 0.045
dataset

MSE - test dataset 0.045 0.110 0.031 0.039
MSE - validation 0.045 0.114 0.037 0.041
dataset
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The validation set (Fig. 10) and the complete dataset (Fig.
11) exhibit the graphical comparison results between
the model and the real data for this network. The small-
est mean square error on the test set was found for the
model with the ReLU function and 33-time steps and 33
LSTM units in the hidden layer, and the slightly larger
ELU model with 31-time steps and 31 LSTM units in the
hidden layer. Finally, the model with the activation func-
tion ReLU and 33-time steps and 33 LSTM units in the
hidden layer was selected as the best model in terms of
the magnitude of the correlation coefficients and the mini-
mum square error.
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Fig. 10. Comparison between actual propylene content and
LSTM model on validation data for the model with ReLU,
33 LSTM units and 33-time steps
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Fig. 11. Comparison between actual propylene content and
LSTM model on the entire data for the model with ReLU,
33 LSTM units and 33-time steps

In Figure 12, the histogram visualizes the distribution of
error values on the entire dataset of the LSTM model,
while Figure 13 presents the distribution of error values
specifically on the validation data of the LSTM model. By
examining both histograms, it becomes evident that the
errors predominantly lie within the + 0.05% range. This
finding serves as strong evidence for the exceptional reli-
ability of the developed LSTM model.
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Fig. 12. Histogram of the error values on the entire data for the
LSTM model with ReLU, 33 LSTM units and 33-time steps

Engineering Power

1400

1200

1000

800

Frequency

600

400

200

0 T T T T T T
-0.20 -0.15 -0.10 —0.05 0.00 0035 010 015 0.20
Error f vol%

Fig. 13. Histogram of error values on validation data for LSTM
model with ReLU, 33 LSTM units and 33-time steps

4. Conclusion

In the refinery’s propane/propylene splitter plant, it is im-
perative to consistently monitor the propylene content in
the product to enhance process efficiency. The propylene
and propane separation process aims to achieve a mini-
mum purity of 99.6 vol% in the propylene, making it ad-
vantageous for use in polymer production.

The deployment of a soft sensor for online product qual-
ity monitoring can improve process control and reduce
expenses associated with the operation and maintenance
of online analyzers.

The focus of this study is on the creation of models that
incorporate neural networks, such as multi-layered per-
ceptrons and long-short term memory networks. These
models are utilized to monitor the propylene content in
the product of the PPS plant. The models were created
using the Python programming language in the integrated
open-source development environment, Spyder.

Among the extensive range of models developed, two
models were singled out as the most promising. One
model proved to be highly effective in neural networks
with multilayer perceptrons, while the other exhibited re-
markable capabilities in neural networks with long-term
memory. The model utilizing the tanh activation function
and consisting of 17 neurons in the hidden layer was cho-
sen as the optimal model among the MLP models because
of its superior error stability. The model with the activa-
tion function ReLU and 33-time steps and 33 LSTM units
in the hidden layer was selected as the best model from
the group of LSTM models. Based on both graphical and
numerical outcomes, the LSTM model demonstrates su-
periority as a result of its stronger correlations, reduced
errors, and enhanced performance stability when adjust-
ing the hyperparameters.

The most effective models of soft sensors in both cate-
gories delivered results that were more than satisfactory,
showing similar correlation coefficients and errors in the
model output data.

These models prove to be effective for application within
the refinery information system. By incorporating these
innovative soft sensors, the anticipated results include
better control over processes and higher quality final
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products, ultimately resulting in substantial savings in
production costs.
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Abstract

The concept of “Industry 5.0 is driving significant changes in the production of chemical products and energy, pro-
moting a shift towards a decarbonized and circular economy. Digitalization, robotics, communications, and artificial
intelligence (Al) play crucial roles in fostering the development of necessary technological innovations and enhancing
intelligent process control. The application of machine deep learning (ML) yields robust, field-neutral solutions for
regression prediction objectives, but it is limited in its capacity to address innovative questions that involve causation
and counterfactual analysis. This paper presents a proposed application of Bayesian networks (BN) for structural
causal modeling (SCM) in the context of manufacturing plants. A critical feature of SCM modeling is its capacity to in-
tegrate extensive prior structural knowledge derived from fundamental chemical engineering principles with structures
inferred from experimental data obtained from manufacturing plants. The acquired SCM facilitates the forecasting of
causal relationships, the simulation of intervention strategies, and the generation of counterfactual responses essential
for process innovations and intelligent process management. The SCM model is presented as a tool for examining cau-
sality and control in the intricate Tennessee-Eastman process.

Keywords: Bayes network, causality, DAG, ATE, Markov blanket, Tennessee-Eastman-Process

1. Introduction waste management, circular economy, sustainability, and

global green transition [1]. The field of process control

As a discipline of computer science, artificial intelli-
gence (Al) has far-reaching effects on all dimensions of
industrial process engineering. It is the key aspect of EU
Industry 5.0 policy of providing solutions to social chal-
lenges by its impact on industry digitalization and robot-
ics, energy production and management, decarbonization,

in chemical manufacturing is emerging as a promising
area of research. The American Institute of Chemical En-
gineering (AIChE) recognizes the significant impact of
Al in chemical engineering research and industry. AIChE
highlights that Al particularly machine learning, is being
widely embraced to solve complex problems, accelerate
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research, and enable computations that were previously
impossiblel. Al is seen as a powerful tool in applications
requiring heavy, iterative computing and large data analy-
sis [2]. AIChE also acknowledges the historical phases of
Al in chemical engineering, noting that while AI’s prom-
ise was not fully realized in the past, the current data sci-
ence phase is ripe for success.

At the recent congress on Future Innovation in Process
System Engineering (FIPSE), the focus was placed on the
promising role of machine learning (ML) within process
systems engineering (PSE). Its application is expected to
revolutionize catalysis, enhance materials design, and im-
prove process operations and automation [3]. There are
numerous areas where machine learning techniques can
be effectively utilized, including:

— Flowsheet analysis

— Surrogate modelling for simulation and optimization
— Integrated planning and scheduling

— Supply chain design and operation

— Process monitoring and fault diagnosis

— Real time optimization and control

The integration of symbolic causal reasoning reflected in
the mathematical equations of core physical and chemical
laws with data-driven methodologies is acknowledged as
a major challenge and a significant opportunity for future
development. The concluding report for the “Al Incuba-
tor Labs in the Process Industry,” part of the EU project
“Knowledge-Empowered Entrepreneurship Network”
(KEEN), underscores the importance of combining actual
process data, relevant domain knowledge, and Al meth-
odologies during the entire life cycle of chemical plants.
The primary goals include enhancing process efficiency,
achieving economic advantages, and promoting sustain-
ability. The project addresses three main Al application
areas: (1) modelling and simulation of processes, prod-
ucts, and plants; (2) engineering of plants and processes;
(3) optimal operation of production plants with the goal
of self-optimizing plants [4]. A report from China high-
lights the significance of Al and robotic automation in
chemical synthesis, particularly emphasizing its appli-
cations within the pharmaceutical industry. The primary
focus is on the implementation of Al for the analysis of
structure-function relationships, the strategic planning of
synthetic routes, and the automation of the synthesis pro-
cess [5]. Al support in mathematical chemistry resulted in
the new field of digital chemistry and the revolutionary
breakthrough in protein engineering. For many years, the
complex problem of protein folding remained unresolved
until DeepMind achieved a solution with atomic preci-
sion, leveraging structured deep neural networks to pro-
duce the AlphaFold open-access software tool. [6]. It will
contribute to a rapid advancement in vital scientific and
engineering disciplines. Another aspect of Al and digital
chemistry is based on molecular descriptors. Each mol-
ecule can be projected in the space of about 6000 2D nu-
merical descriptors applied for deep neural network pro-
cessing. Industrially important cases are structural causal
models of LPMO enzyme activity for biorefinery and tex-
tile waste water treatment, and prediction of deep eutectic
properties for green separation processes [7-9]. Never-
theless, the majority of contemporary machine learning
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techniques rely on patterns derived from large datasets
and statistical inference, which results in a lack of causal
understanding. While they demonstrate strong predictive
capabilities within the assumed static training framework,
they fail to offer any mechanistic insights or causal ex-
planations for their decision-making processes. Although
this may not pose a significant issue in standard applica-
tions of computer vision, gaming, and recommendation
systems, it holds considerable importance for various
challenges in chemical engineering, including fault diag-
nosis, process control, and safety analysis. For chemical
engineers key questions are on the second (effect of do-
ing) and third rung (probability of counterfactual events)
of Pearl’s knowledge ladder [10-11]. The objective of this
research is to outline the methodology for applying ar-
tificial intelligence in structural causal modeling (SCM)
within the context of a chemical manufacturing plant, par-
ticularly the Tennessee Eastman (TE) challenge process.

2. Modelling

In chemical engineering, mass and energy balance models
are typically represented as lumped, continuous, non-sta-
tionary, and deterministic systems characterized by ordi-
nary non-linear differential equations (ODE):

d
§=ﬂy,xﬂ> W(i=0)=y, (1)

Bayes models are stochastic given by joint probability
density function P

model = P(Y.X,0) @)

Dynamic Bayes on-line updated inference of the model
variables {X,Y} is based on prior and likelihood L of old
evidence {Y,, X,}- Probability density distribution of the
posteriori model is given by

Posterioriy _ ( Likelhood . ( Prior Data 3
( model ) ( data ) (model) (evidence) €)

P(Y.X]0) - P(6)

PO ==, )
Learning a Bayes network for a system model involves a
two-step approach. The first step focuses on identifying
the network structure G, which facilitates the factoriza-
tion of the joint probability distribution P into separate lo-
cal distributions P, In the second phase, parameters 6 are
estimated individually by either assuming a probabilistic
framework or utilizing nonparametric inference methods
such as neural networks or decision trees:

learning _ Structure  parameter
P(G,6|data) _ P(Gldata) ~ P(6|G.data) 6))

The structure of the model, represented as G={G, ,,,,jcq4ge>
G, itences» 18 defined as a directed acyclic graph (DAG).
This graph consists of the model variables {Y,X}, which
serve as nodes, and the arrows between them indicate di-
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rect causal relationships. In this research, Gy, 4. 1S de-
rived from the connectivity of streams within the process
sheet, along with an understanding of the mass and energy
balance frameworks for each individual process unit. The
unknown causal patterns G_,.... are inferred from data
by minimization of Bayes information criteria BIC. It is
defined by likelihood L of data X, dimension of sampling
space N, and model complexity (number of the graph pa-

rameters K).
BIC(X|G)=K-In(N)-2-In(L(X|G)) (6)

Utilizing the hybrid heuristic hill climbing algorithm al-
lows for effective reduction of the Bayesian Information
Criterion (BIC) and supports the inference of the most
likely graph G.

G = min [BIC(X|G)] (7

A causally decomposed process state space functions as a
Markov system, facilitating a more straightforward infer-
ence of the joint probability density function P

P(X) = [, P(X |par(X)) (®)

where par(X) are the parent nodes which have a direct
causal effect onX To achieve process control objectives,

it is essential to infer the causal effect on ¥ when the ma-
nipulative variable X is fixed deterministically at a value
of x, as indicated by the “doing” function do (X=x). Due
to the present interaction between process variables, the
evaluation of the effects of intervention requires d-separa-
tion of SCM graph. It produces an adjustment subset Z of
process variables and offers a deconfounded “backdoor”
estimation formula. [11]

P(Ydo(X)) =3 P(Y|X = x, Z = 2)P(Z=2)

=P(Y|W, 2) )

The average treatment effect (ATE) quantifies the causal
impact by measuring the average change resulting from
the treatment.

ATE[y()] =&

EJ(Yldo(X)] (10)

The expected value E associated with the covariates re-
flects the average causal effects calculated from the data
within the adjusted control subset.

3. Process model

Causal Al modeling is utilized in the Tennessee Eastman
plant-wide process, as proposed by Downs and Vogel
(1993). This serves as a benchmark problem for various
control-related topics, such as multivariable controller
design, optimization, predictive control, estimation/adap-
tive control, nonlinear control, process diagnostics, and
control education. This model represents the behavior of
a standard industrial process, featuring a two-phase reac-
tor where an exothermic reaction takes place, in addition

to a flash unit, a stripper, a compressor, and a mixer. The
process exhibits a nonlinear and open-loop unstable be-
havior; in the absence of control, it can reach shutdown
limits within an hour, even when subjected to minimal
disturbances. The TE process, Fig. 1., produces two lig-
uid products (G and H) and one (undesired) byproduct F
from four gaseous reactants (4, C, D and E), according
the reaction stoichiometry [12]

A+C+D—-G
A+C+E—H
A+E—>F

(11)

Fig. 1. Tennessee-Eastman process scheme [13-20]

Dynamic mass balances are given by the following ODE :

mixer

dN,

nLm _ 6 )
dt _/.glyi'jF;‘_yi’g l:A,"'H (12)

reactor

dN

o VitV ,7F7+ZV,,R, i=4..H (13)

separator

dN,.vs

(F,+F)-x,F, i=A.H (14

L7 7 y18

stripper

NI
— _(1 g)('x110 10 F4)_xi,11F11 G’H (15)
Heat balances are given by:

mixer

H d Tm 8 H
(ZNoomd =2 (2956,) - T)

j=1 7

(16)
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reactor

H dT, H 3
(l;]vi,rcp.,i) dt = F6( =4 yi,ﬁcp.vup,i) (T6_ T:) - Qr; :Z]AHV,]Rj (17)

J

separator

H dT, _ H
(i:ZA]Vin"Cﬁ-J) dt - F7([ “~ yi,7cp.vap,i) (]:'- 7;) - Q.\' -H()V.s- (18)
striper

(SN0 5= Fu (3 5,6, )(T-T)+

i=4

+F4 (z yi,4 cp.vap,i) (T4 - Tp) _HOI/P + QP

i=4

(19)

The system is a lumped MIMO DAE model consisting
of 30 nonlinear state y differential ordinary differential
equations (ODEs) and 149 algebraic equations x, incor-
porating 10 input variables and 130 physical and chemical
parameters 6. Simulation software is included within the
MatLab Simulink software support framework [18]. The
results of these simulations can be accessed through Har-
vard Dataverse and GitHub repositories [17,20].

4. Results and discussion

The analysis utilizes a dataset comprising 50,000 random-
ly selected samples of process variables, collected under
normal operating conditions during a simulated 48-hour
continuous operation. The data includes 12 manipulative
control variables (exogenous) and 35 continuous vari-
ables (endogenous), as illustrated in Fig. 1 [19]. The data
exhibit a Pearson correlation coefficient of R=0.22, indi-
cating a moderate level of correlation. The focus of the
analysis is on predicting and understanding the causal ef-
fects of process variables on the production rates of G and
H. For numerical and statistical evaluation the R language
and “qeML” machine learning tool wrapper are applied
[21-23].

The “random forest” algorithm was utilized to assess
the significance of variables by measuring the improve-
ment in the predictive accuracy of G product’s produc-
tivity. The results of the variable relative importance are
depicted in Fig. 2. The reactor pressure, separator tem-
perature, and stripper pressure account for approximately
95% of the overall significance in predicting G produc-
tivity. Because of the confounding effects introduced by
multivariate correlation, the importance factors identified
do not reflect the direct causal relationships of the vari-
ables with G production. Utilizing a complete set of 34
predictor variables, the “random forest” machine learning
model has shown impressive predictive accuracy, as evi-
denced by tests conducted on 8,000 trained samples and
2,000 untrained samples, Fig. 3. The model successfully
accounts for 95% of the data variance, with mean relative
absolute errors of 1.9% for the trained data and 2.2% for
the untrained data related to G production.

Engineering Power

Product separatpr temperator | IR
Stripper steam temperature | IR
G in purge stream  IEEEEEGEG_——
Stripper temperature I
Compressor work [N
Ciin purge stream I
Reactor pressure - I
Product separator level - I
Stripper pressure I
Afeed I
r T T T T T T 1
0 1 2 3 4 5 6 7

Relative importance

Fi

g. 2, Variable importance for the ML model prediction
of G production.

‘;ooh‘
* frained »
— 9 « untrained Aol o
£ o 4 Lo
IS o8
~
(O
L o
= =
—
o
9 o
O o
-c -~
9]
—
o

1.5

I I I I I
1.5 12.0 12.5 13.0 13.5

Production rate G / m3h-'

Fig. 3. Comparison of the random forest model (RF)
predictions and values of G purge rate.

While the RF model demonstrates a high level of predic-
tion accuracy, its agnostic nature—implying a presumed
absence of domain knowledge—renders it unsuitable for
do(X=x) analysis of causal relationships. This analysis is
crucial for making informed decisions regarding process
interventions, control policies, and optimization strate-
gies.

The studied TE serves as a model for a manufacturing
production system, grounded in the principles of chemi-
cal engineering, resulting in highly detailed and precise
field knowledge (eq. 12-19). Deterministic direct causal
relationships are established through functional forms of
mass and energy balances, stoichiometric relationships
of chemical reactions, and causal connections derived
from the design of process synthesis, as represented in
a process sheet or graph. In practice, certain process pa-
rameters are estimated with inherent uncertainties, while
others remain unknown, particularly kinetic parameters.
Additionally, some interactions may be unforeseen, such
as catalyst poisoning, and there are process disturbances
that go unobserved. The Bayes network Al model is pro-
posed which accounts for causal effects of stochastic na-
ture present in an industrial process. The known structural
causality, given as graph G is integrated with data
inferred causality G,

knowledge>

ata*
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Fig. 4. Directed acyclic graph (DAG) of TE process. M
are measured state variables, manipulative variables V,
product G in liquid and gas purge are GL and GL M9
and M7 are reactor temperature and pressure.

Table 1. Labels of the process flow sheet

M1 A feed (stream 1)

M2 D feed (stream 2)

M3 E feed (stream 3)

M4 A and C feed (stream 4)

M5 recycle flow (stream 8)

M6 reactor feed rate (stream 6)

M7 reactor pressure

MS teactor level

M9  reactor temperature

M10 purge rate (stream 9)

M11 product separator emperature

M12 product separator level

M13 product separator pressure

M14 product separator underflow (stream 10)
M15 stripper level

M16 stripper pressure

M17 stripper underflow (stream 11)

MI8 stripper temperature

M19 stripper steam flow

M20 compressor work

M21 reactor cooling water outlet temperature
M22 separator cooling water outlet temperature
V1 D feed flow (stream 2)

V2 E feed flow (stream 3)

V3 A feed flow (stream 1)

V4 A and C feed flow (stream 4)

V5  compressor recycle valve

V6 purge valve (stream 9)

V7  separator pot liquid flow (stream 10)
V8 stripper liquid product flow (stream 11)
V9  stripper steam valve

V10 reactor cooling water flow

V11 condenser cooling water flow

Table 2. Canonical adjusted sets of the control variables
for product Gy,,;q and Markov blankets of the
reactor variables.

Adjusted control variables for product G,y

M9: reactor | M1, M12, M2, M21, M3, M4, M6, M8,
temperature | V1,V10,V2,V3, V4

M7: reactor | M1, M12, M2, M21, M3, M4, M6, M8,
pressure M9, V1, V10, V2, V3, V4

Markov blankets for the reactor

MO: reactor | M10, M16, M17, M18, M6, M7, M8,
temperature | V10, GG, GL

M7:reactor | M10, M16, M17, M18, M22, M9, GG,
pressure GL

Integrated structure G ={ Gy, eer Guara} » N Observed data,
and K number of the model parameters are jointly evalu-
ated by minimization of the corresponding Bayes infor-
mation criteria, BIC, eq. 6. Applied is hybrid heuristic
MMHC algorithm [25-26]. To identify the G skeleton,
MMHC employs tests of conditional independence, seek-
ing variable subsets Z that render a pair of variables X and
Y conditionally independent. They are inferred from the
corresponding conditional independence as proposed in
the stable PC algorithm [26]. The application of heuris-
tic local optimization in the G search space results in the
most probable posterior Bayes network model, leveraging
known prior causal structure and causal relationships in-
ferred from the data observed (eq. 7). The obtained model
is the DAG graph presented in Fig. 4. The model accounts
for the measured state variables (M), manipulative vari-
ables (V), and production rate of product G in gas purge
stream and liquid striper underflow (GG, GL). The struc-
ture of the DAG model achieved allows for d-separation,
effectively preventing “back door” confounding of causal
effects. The adjusted sets Z of control variables, which
account for the dependence of GL on reactor temperature
and pressure, are presented in Table 2. The correspond-
ing Markov blanket sets yield the paternal, children, and
children parent nodes by which the reactor temperature
and pressure are separated from the perturbations of the
rest of process variables. Pair-wise causal dependencies
are depicted in Fig. 5. The graphs shown represent partial
dependency plots generated by Bayes neural networks,
which were trained on the relevant adjusted Z sets. The
method applies single inner layer network configurations
featuring sigmoid activations, with backpropagation used
for the learning mechanism. The graphs are traces of in-
dividual Y[do(x)] where Y is the molar percentage of the
product G in the separator underflow liquid stream, and x
are the following process variables: compressor recycle %
opening, £ feed stream, input mixed 4 and C stream, and
D feed rate. The developed model facilitates the estima-
tion of indirect causal relationships that remain obscured
due to implicit nonlinearities, making them not readily
apparent from prior structural knowledge. The observed
dispersions of the causal plots are due to the effects of
variability of the rest of variables from the correspond-
ing adjusted control sets. Bivariate effects of synergism
and antagonism are depicted in Fig. 6. The plots are two-
dimensional partial dependency plots of the estimated ex-
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pected values Ez[Y(x1,x2)] where x1 and x2 are selected
variables from the adjusted control set of Y and averaging
E covers the complimentary set Z/(x1,x2). The f results
facilitate the visualization of causal synergism within a
system characterized by opaque and intricate nonlinear
interactions.
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Fig. 6. Bayes NN bivariate causal partial plots of the dependency
of molar G% in liquid outlet stream on the key process variables.

The visualization of causal interactions provides basis for
design of multilevel control system, process optimization,
and synthesis of alarm system for fault detection.

5. Conclusions

The causal artificial intelligence model offers engineers in-
sights into the impacts of decisions and interventions with-
in a manufacturing system, particularly under novel and
previously unobserved conditions. Formally, it infers nu-
merical functions of ATE (average treatment effect, doing
Y[do(X=x)]) and/or CATE (conditioned average treatment
effect, doing Y[do(X=x)|Z=z)]) effectsThe improvement of
agnostic machine learning models is of utmost importance,
given that their regressive property limits their ability to
make predictions solely based on conditions that have been
previously encountered. The modeling of causality utiliz-
es Bayesian networks, which facilitate an advanced level
of artificial intelligence and enable causal inferences that
align with the second tier of Pearl’s knowledge ladder|[11].
The primary characteristic of causal Bayes networks is
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their structural representation of direct causal relationships,
which adhere to the Markovian property.

In the context of industrial systems, structural knowledge
is largely grounded in causal structural equations that
originate from basic principles of mass and energy con-
servation, as well as the schematics of designed process
flows. It is possible to infer unobserved or unknown in-
teractions by merging a priori structural insights with sta-
tistical conditional analysis or by optimizing the Bayes-
ian Information Criterion (BIC) in the context of causal
networks. The representation of system structural knowl-
edge takes the form of a directed acyclic graph (DAG)
that includes process variables, with network nodes
linked by direct causal connections indicated by arrows.
DAG networks exhibit Markovian properties, allowing
the joint probability function to be decomposed into the
products of the probability distributions of simple parent
nodes. Unknown physical and chemical parameters are
incorporated within the node regression parameters and/
or weights of neural networks, utilizing substantial data
collected from process monitoring..

The methodology and analysis of causal artificial mod-
eling are utilized in the examination of the chemical syn-
thesis process at the Tennessee Estman industrial complex.
The process in question is a catalytic, two-phase (gas and
liquid) system that exhibits instability. Initial structural
understanding is obtained through basic mass and energy
balance calculations, as well as the relationships between
mass and heat streams specified in the process flow sheet.
Unobserved causal relationships can be effectively iden-
tified through the heuristic minimization of the Bayes-
ian Information Criterion (BIC) within the model. This
causal model provides unconfounded estimates regarding
the importance of process variables, utilizing adjustment
sets as control variables. It also incorporates the Markov
blankets for reactor pressure and temperature, along with
average treatment effects (ATE) and the synergistic inter-
actions between process variables.

Causal Al models offer vital information that is crucial
for the optimization of processes, the innovation of op-
erational methods, the development of intelligent control
systems, and the support of decision-making strategies in
manufacturing [27].

From a chemical process engineering standpoint, the main
difference in the applicability of causal Bayes networks
versus first principle models, like mass and energy bal-
ances, is their consideration of stochastic effects. Causal
Bayes networks effectively address both exogenous vari-
ables (process feeds) and endogenous variables (gener-
ated by the process), particularly in terms of kinetics and
mass/energy transfer coefficients. In summary, funda-
mental mathematical models serve as the foundation for
process design, whereas Bayes causal Al models concen-
trate on process control and decision-making policies for
interventions in uncertain environments.
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Abstract

As a global and vital part of modern life, the food process industry continues to evolve and develop, adopting newly
developed tools and technologies to improve efficiency and ensure food safety while minimizing environmental impact
and striving towards sustainability. Food processing is essential for preparing and preserving food for an ever-growing
population. Artificial intelligence and machine vision technologies have emerged as promising tools in the food process
industry, offering opportunities for enhanced quality control, increased productivity, and improved traceability. This ar-
ticle discusses the implementation of artificial intelligence and machine vision in the field of food process engineering,
showcasing how these technologies can optimize processes, improve quality control, and contribute to sustainability in
food production.

Keywords: Artificial intelligence, machine vision, food processing, Artificial neural networks.
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1. Introduction

The food industry plays a crucial role in supplying the
ever-growing global population with safe and nutritious
food. The human population has reached 8 billion people
on November 15. 2022 and World Population Prospects
2022 published by the United Nations Department of Eco-
nomic and Social Affairs predicts that by 2058 there will
be 10 billion people on the planet [1]. With climate chang-
es resulting in extreme weather, the food industry will be
tested to find novel foods and technologies to satisfy the
increased demand for food. Traditionally, food processing
has relied heavily on thermal processing techniques such
as pasteurization and canning to ensure food safety and
extend shelf life. However, these processes require lots of
energy and can result in nutrient loss and changes in the
sensory properties of food products. Moreover, traditional
food processing methods may not be sufficient to meet the
growing demand for diverse and convenient food prod-
ucts [2]. To reduce energy consumption, and environmen-
tal footprint and increase efficiency and sustainability as
well as food quality and shelf-life, the food industry is
turning toward novel food processing technologies em-
ploying high hydrostatic pressure, pulsed electric fields,
irradiation, ultrasonication, cold plasma, hydrodynamic
cavitation, microwaves, radio frequency heating, ohmic
heating, ozone treatment and supercritical fluids such as
carbon dioxide and water [3].

Artificial intelligence (Al), a term that was used first by
John McCarthy in 1955, in his proposal for a summer re-
search project on the concept of thinking machines, which
was held at Dartmouth College in 1956 gathering leading
minds in computer science and cognitive psychology, to
create a machine capable of performing tasks that would
typically require human intelligence [4]. Researchers have
underestimated the complexity of such tasks and progress
in the field was slower than expected, resulting in the “Al
winter” from the late 1960s to the late 1990s. During this
period, Al research and development faced significant
challenges and funding was reduced. However, during
the late 1980s and early 1990s, there was a resurgence
in Al research and development, boosted by the growing
processing power of digital computers and progress in
computer science. In recent years, there has been signifi-
cant progress in Al research, driven by advancements in
machine learning and various related disciplines. These
advancements have opened up new possibilities for the
food industry, particularly in the field of food processing
[5][6]. The purpose of this paper is to outline the various
applications of Al and machine vision technologies in the
food processing industry.

2. Artificial Intelligence

The field of artificial intelligence has evolved within com-
puter science, concentrating on the creation of systems
that can carry out functions traditionally associated with
human intelligence. This involves various skills such as
solving problems, identifying patterns, comprehending
natural language, and acquiring knowledge through expe-
rience. Artificial neural networks (ANN) serve as the cor-
nerstone of artificial intelligence, functioning as computa-
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tional models that draw inspiration from the architecture
and operations of the human brain [7]. ANNs are made
from interconnected artificial neurons organized in lay-
ers (Fig. 1a.). Input layer which receives raw input data,
where each neuron corresponds to one of the features of
input data. Hidden layers of neurons (one or more), are
located between input and output layers on ANN. The
neurons in this layer receive inputs from the preceding
layer through weighted connections, utilizing an activa-
tion function to generate outputs that are transmitted to
the subsequent layer (Fig. 1b.). The output layer, which
is the last layer of the artificial neural network (ANN),
generates the network’s output. Each neuron in this layer
corresponds to a specific class or value that the ANN aims
to recognize or forecast.

Each neuron within these layers has associated weights
and biases that are adjusted during the training process.
The neuron’s activation function defines how it reacts to
the sum of the weighted inputs. Common activation func-
tions include the sigmoid, tanh, ReLLU, and softmax [8].
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Fig. 1. Generalized structure of ANN (a) and artificial neuron (b)
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Neuronal connections facilitate the transfer of output from
one neuron to become the input for another neuron. The
strength and sign of these connections are determined by
the weights, which are adjusted during the training phase
so that the network can learn to make accurate predic-
tions or decisions. This training usually involves a process
known as backpropagation, where the error between the
predicted output and the actual output is computed and
used to update the weights of the network through an op-
timization algorithm such as gradient descent [9][10].

The structure and design of an ANN play a crucial role in
its ability to learn and perform tasks accurately.

Typically, Al systems are categorized into two types weak
or strong Al [11][12]. Weak Al, or narrow Al refers to
Al systems that are designed and trained for a specific
task, such as image recognition or speech recognition.
Conversely, strong Al, also known as general Al, refers
to a machine that possesses the capability to utilize in-
telligence across a wide range of problems, rather than
being limited to addressing a single specific issue. This
variant of Al can grasp, learn, and implement knowledge
in various areas, yet it has not been completely realized
and is still the focus of continuous research. The field of
Al includes a range of subfields that target different com-
ponents of human intelligence, with the key ones being:

* Machine learning relies on algorithms to enable
machines to learn from data and make predictions.
Learning can be done with supervised, unsupervised,
or reinforcement learning techniques. Recently, deep
learning techniques that utilize deep neural net-
works—characterized by multiple hidden layers—
have surfaced as effective tools for modelling intricate
patterns within data. [13].

» Computer vision systems have a goal to enable ma-
chines to perceive and understand visual information
such as images or videos. These systems use image
processing algorithms to extract meaningful features
from the visual input and can be applied in various
tasks such as object recognition, image classification,
and machine vision [14][15]. These systems have
wide applications in various industries.

» The field of robotics emphasizes the design and devel-
opment of machines that can physically interact with
their environment. These machines are equipped with
sensors, actuators, and algorithms that allow them to
perceive their surroundings, make decisions, and carry
out tasks autonomously [16][17].

» Natural language processing aims to enable machines
to understand and generate human language. This field
involves the development of algorithms and models
that can process and analyse text, speech, and other
forms of language data [18][19].

» Expert systems are Al systems that emulate the de-
cision-making ability of human experts in a specific
domain. These systems use knowledge representation
and reasoning techniques to provide solutions and rec-
ommendations based on their expertise [20].

Al aims not only to simulate intelligence but also to ex-
tend human capabilities by processing large amounts of

data at a speed that far exceeds what humans can do. Al
applications are diverse and span multiple industries, in-
cluding healthcare, transportation, finance, manufacturing
and, as your document discusses, food processing.

3. Machine Vision Systems

Machine vision systems are being incorporated in vari-
ous industries, including the food industry, typically in
conjunction with machine learning or ANN to enhance
automation and improve quality controlMachine vision
systems typically consist of two main components: the ac-
quisition of images and the processing of those images.
The acquisition phase involves various sensor types de-
signed to capture images of food products [21] comple-
mented by suitable lighting sources. The image processing
phase involves applying different methods, ranging from
statistical to machine learning and deep learning models
to effectively analyse and interpret the captured images.

Machine vision systems use various types of sensors to
capture images for analysis. The choice of sensor depends
on the specific requirements of the application, such as
resolution, speed, sensitivity, and environmental condi-
tions. Several kinds of sensors are frequently employed in
machine vision systems:

* Charge-Coupled Device Sensors: These sensors are
known for their high-quality images and excellent
light sensitivity. CCD sensors are commonly used in
applications requiring precise measurements, inspec-
tion, and high-resolution imaging [22].

* Complementary Metal-Oxide-Semiconductor Sensors:
CMOS sensors are generally more cost-effective and
consume less power compared to CCD sensors. They
are capable of faster processing speeds and are used
in applications where high frame rates and integration
with on-chip processing circuits are required [22].

 Infrared Sensors: These sensors capture images based
on infrared light, which is not visible to the human
eye. They are useful for applications in low-light con-
ditions or where temperature differentiation is impor-
tant [23].

» X-ray Sensors: Used for inspection purposes where
penetrative imaging is necessary, such as detecting
flaws inside metal parts or inspecting packaged goods
for contaminants [24][25].

e Thermal Imaging Sensors: Capture images based on
the heat emitted by objects. They are used in appli-
cations ranging from medical diagnostics to industrial
inspection where temperature variations need to be
monitored [26][27][28].

* Line Scan Sensors: Instead of capturing a whole im-
age at once, these sensors capture data line by line to
create an image. Line scan cameras are suitable for
inspecting objects moving at high speeds on a produc-
tion line, such as webs of materials or cylindrical parts
[29].

* Time-of-Flight Sensors: These use the time it takes for
light to travel to an object and back to calculate dis-
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tance. ToF cameras are useful in 3D imaging and can
help with object recognition, volume measurement,
and collision avoidance in robotic applications [30]
[31][32].

» 3D Sensors: Utilize various technologies, such as laser
triangulation or stereovision, to create three-dimen-
sional images of objects. They are used in complex
inspection tasks where depth information is critical
[33][34].

» Ultraviolet Sensors: UV cameras can capture images
using ultraviolet light, which can be used to highlight
certain features that are not visible with standard light-
ing conditions [35].

e Multispectral and Hyperspectral Sensors: Capture
image data at specific frequencies across the electro-
magnetic spectrum. These sensors can detect chemical
composition or moisture content and are used in appli-
cations such as agricultural monitoring [36][37][38].

The importance of lighting in machine vision cannot be
overstated, as it plays a critical role in the effectiveness
of the imaging system. Proper lighting is essential for
capturing high-quality images that are needed for accu-
rate analysis. The choice of light source will depend on
the specific requirements of the application [39]. Several
pivotal outcomes can be attained by implementing effica-
cious illumination within machine vision systems, under-
scoring its significance:

» Feature Enhancement: Lighting can be configured to
emphasize specific features on the subject being im-
aged, such as edges, colours, or textures, which are
critical for accurate detection and measurement.

» Consistency: Consistent lighting ensures that images
are captured with uniform brightness and contrast,
which is essential for reliable comparison and analy-
sis, especially in applications where precise measure-
ments or consistent quality checks are required.

» Contrast: Proper lighting enhances the contrast be-
tween the object and its background, facilitating easier
identification and processing by the vision system.

* Image Clarity: Good lighting reduces shadows and
glare that can obscure details and degrade the qual-
ity of the image. With clear images, machine vision
systems can detect defects, sort products, and guide
robots with greater precision.

* Speed and Efficiency: Adequate lighting allows for
faster shutter speeds, which is crucial for imaging fast-
moving objects on production lines without motion
blur, thus improving the throughput and efficiency of
industrial processes.

* Reduction of Noise: Optimal lighting conditions en-
able the camera to operate with lower ISO settings and
shorter exposure times, reducing the amount of noise
in the captured image and increasing the signal-to-
noise ratio.

» Safety and Non-destructive Inspection: In some ap-
plications, the correct lighting can allow for the safe
and non-destructive inspection of products, such as us-
ing X-ray or infrared light to inspect packaged goods
without opening them.

Engineering Power

» Flexibility: By manipulating lighting conditions, a ma-
chine vision system can be adapted to different tasks
and environments, making the system more versatile
and capable of handling a wide range of inspection du-
ties.

In summary, lighting in machine vision is pivotal in en-
suring that the system performs as expected. It affects
virtually every aspect of the image-capturing process,
thereby influencing the success of applications that rely
on machine vision technology [40].

After image acquisition, machine vision systems typically
include several major steps (Fig. 2.) for processing and
interpreting visual information: image pre-processing,
segmentation, feature extraction, pattern recognition/clas-
sification, and decision-making [39].

Image pre-processing includes various techniques to en-
hance the quality and clarity of acquired images before
further analysis [41]. The most common methods for im-
age pre-processing include grayscale conversion, noise
reduction, histogram equalization, image enhancement,
and image normalization [39].

Image acquisition

\
Image pre-processin Pattern recognition /

ge pre-p 9 classification

>V
A

\

Segmentation Decision-making
4

Fig. 2. Major steps for processing and interpreting visual
information in machine vision systems.

Segmentation is the process of partitioning an image into
meaningful regions or objects to simplify further analy-
sis. Segmentation techniques determine the boundaries
and regions within an image, allowing for more efficient
and accurate recognition of objects or features of inter-
est. Segmentation techniques can be based on intensity
thresholds, edge detection, region growing, or clustering
algorithms [42][43][44][45]. Feature extraction involves
extracting relevant visual features from the segmented
regions, which can include shape, texture, colour, or spa-
tial relationships [46][47]. These features are then used
to characterize and describe the objects or regions of in-
terest in the image. Pattern recognition/classification is
the step in which machine learning algorithms or other
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mathematical methods are applied to identify and classify
objects or patterns based on the extracted features from
the previous steps [48]. This step involves comparing the
extracted features with a pre-defined set of criteria or pat-
terns to determine the class or category to which an object
belongs. Decision-making is the final step in the machine
vision process, where a decision or action is made based
on the classification or recognition results [39].

4. Application of AI and Machine Vision in
the Food Processing Industry

The food processing industry, similar to other processing
sectors, relies on obtaining raw materials and converting
them into final food products. However, unlike in other
processing industries, the raw materials in the food indus-
try are perishable and susceptible to spoilage [49]. This
underscores the importance for the food processing indus-
try to optimize its operations and ensure quality control
throughout the production process [50]. The strategy of
managing the food chain is often described as “from farm
to table” or from “field to fork,” highlighting the critical
need for maintaining strict time frames for ensuring qual-
ity and safety during food processing from harvesting or
production until it reaches consumers’ plates. Artificial
intelligence has emerged as a powerful tool in the food
processing industry to address these challenges and en-
hance various aspects of the production process such as:

* Food quality and safety determination (raw materi-
als): Al systems can analyse and evaluate the quality
of food products based on various parameters such as
appearance, texture, taste, and aroma [51]. This can
help ensure that only high-quality and safe raw mate-
rials are used in the production process. Also, Al can
be used to monitor and inspect finished food products,
ensuring that they meet the required quality standards.

» Control tools: Al can be used to monitor and control
various aspects of food processing operations, such
as temperature, humidity, pressure, and other critical
variables. This ensures that the production process is
optimized for efficiency and consistent quality.

* Food processing: Al can optimize and automate vari-
ous processes in food processing, such as ingredient
mixing, cooking, packaging, and labelling, to improve
efficiency and consistency [52][53].

* Food sorting and Packaging: Al can automate the sort-
ing process of food products based on quality, size,
colour, or other characteristics [51].

* Predictive maintenance and optimization of food pro-
cessing equipment: Al can analyse data collected from
sensors and machines to predict when maintenance or
repairs are needed, reducing downtime and maximiz-
ing equipment efficiency [51][54].

» Sales forecasting and supply chain management: Al
can analyse historical data, market trends, and con-
sumer behaviour to accurately forecast sales demand
and optimize the supply chain, ensuring efficient pro-
duction and minimizing wastage [55][56].

* Generally, Al can be employed in almost all parts, if
there is enough data for model development, the prob-
lem can be reduced to optimization, classification,
pattern recognition or decision-making. These appli-
cations of Al in the food processing industry have the
potential to significantly improve efficiency, quality,
and safety throughout the entire production process,
ultimately leading to higher customer satisfaction and
a more sustainable food industry [55]. Furthermore,
the integration of machine vision in food process en-
gineering allows for real-time monitoring and analysis
of food products [57]. This enables quick detection
and response to any quality or safety issues, ensuring
that only safe and high-quality products are delivered
to consumers. In summary, Al and machine vision
have numerous applications in food process engi-
neering, including improving traceability, detecting
contaminants, ensuring employee safety and hygiene,
optimizing production processes, and enhancing over-
all quality and efficiency. In recent years, machine
learning and machine vision have played a crucial role
in enhancing various aspects of the food processing
industry [47][58].

5. Challenges and Opportunities in AI-Driven
Food Engineering

Artificial intelligence-driven food engineering has the
potential to revolutionize the food industry by improving
productivity, efficiency, and quality. But, as with all new
technologies, there are some challenges and opportunities
that need to be addressed [21].

One of major the challenges in implementing Al-driven
food engineering is the availability and quality of data.
High-quality data is crucial for training Al models and
ensuring accurate results. Advanced artificial intelligence
models require extensive data sets, posing challenges in
terms of acquisition, storage, and processing. This also
results in increased expenses and complexity during the
implementation phase. Al models also require diverse
and representative data to avoid bias and ensure fairness
in their predictions [59]. Designing artificial intelligence
models capable of managing the inherent variability in
food products and processes presents a significant chal-
lenge. Initial investment and infrastructure requirements
for implementing Al are also challenges and might be bar-
riers for small and medium-sized enterprises that need to
be addressed [60].

A related issue that arises is the lack of skilled profes-
sionals who possess knowledge in both the technological
and food science dimensions of Al-driven food engineer-
ing[51]. Integrating Al technology into established food
processing systems can present challenges and often de-
mands considerable adjustments or upgrades [21]. Com-
plying with stringent food safety and quality regulations
when implementing Al technologies can be difficult. It is
common for Al-driven systems to exhibit limited inter-
pretability, posing difficulties in comprehending and ar-
ticulating the reasoning that underlies their decisions [51].
Al recently received a lot of media attention and raised
many questions which can result in scepticism or ethical
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concerns among consumers regarding Al in food produc-
tion, affecting market acceptance.

Despite these challenges, there are also significant op-
portunities in Al-driven food engineering. Utilizing Al
technology in the food industry can result in improved
productivity and greater efficiency [57]. It can auto-
mate repetitive complex tasks such as sorting, grading
and packaging of food by enabling machines to handle
products with variability [61][62][63][5][64]. Al can also
optimize processing parameters, leading to improved
quality and reduced waste [57]. Enhanced quality con-
trol can be achieved with Al systems capable of detect-
ing defects, contaminants, and foodborne pathogens in
real-time, ensuring safer products for consumers [65]
[6]. Additionally, Al can help in product development by
analysing consumer preferences and trends, allowing for
more personalized and innovative food options [6][66]
[67]. Furthermore, Al can assist in supply chain manage-
ment by predicting demand, optimizing inventory levels,
and improving logistics [68][69][70][71]. In summary, Al
and machine vision have the potential to revolutionize the
food processing industry by enhancing productivity, im-
proving product quality and safety, and optimizing supply
chain management.
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